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Abstract. We present some Quantum Field Theory (QFT) results concerning the Yukawa model, solved
non-perturbatively with the help of lattice techniques. In particular we focus on the possibility of generating
a two-nucleon bound state, as compared to the non-relativistic limit of the same model. Preliminary results
show the appearance of zero modes of the Dirac operator. They limit the numerical solution of the model
to values of the coupling constant which are too small to allow binding of the two-nucleon system.

PACS. 13.75.Cs Nucleon-nucleon interactions — 11.10.-z Field theory

1 Introduction

The nucleon-nucleon (N N) interaction is one of the most
widely studied problems in theoretical physics. From me-
son exchange models [1,2] to effective chiral Lagran-
gians [3], a huge effort has been devoted to developing
suitable NN potentials that could reproduce the nuclear
binding energies and scattering properties. Using Green’s
function Monte Carlo methods one can nowadays compute
the nuclear spectrum up to ~ 12 nucleons [2].

Most potential models are inspired by an underlying
QFT, from which only a very particular kind of diagrams
is taken into account when solving the dynamical equa-
tions: in practice the solution is currently possible only in
the ladder approximation.

For the Wick-Cutkosky (WC) model, all crossed-
ladder graphs were summed up in [4], and the resulting
binding energies are much bigger than the ones obtained
within the ladder approximation. This strong disagree-
ment is one of the most important motivations for the
present work. As the WC model is not consistent as a field
theory [5], we will study the simplest renormalizable QFT
involving fermions, where one species of fermions interacts
with a scalar meson via a Yukawa coupling.

The interest of this approach is manifold. On the one
hand, it allows a comparison with the results of the ladder
approximation in various relativistic and non-relativistic
(NR) equations. On the other hand, and including other
couplings, it could provide a relativistic description of nu-
clear ground states in terms of the traditional degrees of
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freedom —mesons and nucleons— with no other restric-
tion than those arising from the assumed structureless
character of the constituents.

2 The model

We consider a system of two identical fermions (¢)) in-
teracting through the exchange of a scalar meson (¢) de-
scribed by the Lagrangian density,

L =1%Dy + Lxa() + Gop ), (1)

where D = 7,0, — My is the Dirac operator with a
bare fermion mass My and Lkq is the Klein-Gordon La-
grangian for the scalar field. This model —with an addi-
tional A\¢* term— has been widely studied in the frame-
work of the Higgs phenomenology [6]. In the NR limit (1),
it gives rise to the potential
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where m; is the meson mass. The NR model depends on

a unique parameter, G = %&rmﬁs, and the first bound state
appears for G & 1.68. The existence of this unique scaling
parameter holds in the Schrédinger equation but it is no
longer true in a relativistic or a QFT description.

In order to study the bound states, one needs to take
into account contributions to all orders in the coupling. A
perturbative approach is therefore not suitable. Instead,
a genuinely non-perturbative tool will be used: the lattice
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field theory. The Yukawa model is solved on a Euclidean
space-time lattice, where vacuum expectation values are
computed in the Feynman path integral approach. For the
dressed nucleon propagator one has, for instance,
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where the Euclidean action acts as a probability distribu-
tion, allowing for a Monte Carlo integration.

We have chosen the following discretization of scalar
fields:

SKG:%Z

T

(8+a*m}) 42 =2 dorude| (4
1

and for fermion ones:

S = Easzﬂ/}y )
zy

where D,, is the Wilson-Dirac operator

Dyy = (14 91¢2) 0y
—K Z (1= Yu)dariy + 1+ Y)0o—py],  (5)
I

in which the hopping parameter, x = 1/(8 + 2aM,), and
g1, = 2Kgo have been introduced.

Fermion fields, being Grassmann variables, have to be
integrated out in an algebraic way, resulting in

G (z,y) = %/[d¢]D*12‘5 det(D)e ", (6)

This calculation is rather demanding in computing time
due to the determinant. The task is considerably simpli-
fied in the “quenched” approximation, which consists in
neglecting all virtual nucleon-antinucleon pairs originat-
ing from the meson field ¢ — 7). Thanks to the heav-
iness of the nucleon, this appears to be a good approxi-
mation for the problem at hand and has been adopted all
along this work. Note that this is not a priori justified
for QCD, where quarks are very light. Nevertheless, the
quenched approximation gives there qualitatively good re-
sults. Mathematically it amounts to setting det(D) = 1.
The main numerical task in calculating (6) is the inversion
of the Dirac operator D,,.

In the quenched approximation, and in the absence of
meson self-interaction terms, the meson field is free, and
¢ field configurations can be independently generated by
a Gaussian probability distribution in momentum space.

3 Spectrum of the Dirac operator

The spectrum of the free Dirac operator (5) lies inside a
circle centered on Ao = (1, 0) with radius 8«. In QCD when
the interaction is turned on, the eigenvalues are modified,
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Fig. 1. Spectrum of the Wilson-Dirac operator for a small
lattice and several values of the coupling.
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Fig. 2. Average number of negative eigenvalues for several

lattices with Lam, = 5 as a function of gr..

but their real part is always positive. In the Yukawa model,
on the contrary, the coupling term plays the role of a mass:
as the coupling constant grows, the spectrum spreads out
and some eigenvalues move to the Re(\) < 0 half-plane
(fig. 1).

Eigenvalues with a negative real part spoil the conver-
gence of most iterative algorithms, but this is not a funda-
mental problem. Nevertheless, for large values of the cou-
pling and large lattices the probability of having very small
eigenvalues grows dramatically. A simplified but signifi-
cant picture can help to estimate the appearance of those
small eigenvalues. The diagonal terms in (5) have the form
14 gr.¢, which vanish for ¢, = —1/gr,. According to (4),
the values of ¢, are distributed around zero with a width:

2=y

———— .k =2) (1-cos(ky). (7)
hev k2 +m3 i

The average number of negative eigenvalues quickly in-
creases with the coupling and the lattice size, as is shown
in fig. 2. The non-diagonal terms in (5) sligthly modify
this picture. In practice, for L ~ 16 the small eigenvalues
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Fig. 3. One- (M;) and two-body (M>) effective masses versus
the Euclidean time, for a 20% x 80 lattice with go ~ 1.6 and
ams = 0.200. Two times fermion mass is plotted (2M;) to
compare with mass of two-fermion 0% state.

hinder the numerical solution of the linear system for
gr 2 0.8. This implies the existence of a maximum value
of the coupling constant that can be used. The problem
could perhaps be solved in the unquenched case, as the
fermionic determinant would eliminate the configurations
with very small det(D).

4 One- and two-body masses

The one-body mass is computed from the time-
dependence of the Euclidean correlators:

Ci(t) = 3 Tr[Gl, )] ~ e M, )

for large values of t, determining the fermion renormal-
ized mass, M;. Preliminary results on one-body masses
for both scalar and pseudoscalar coupling were already
presented in [7].

The two-body mass, Ms, is obtained in a similar way,

from the time evolution of the J(z) = Iapta(2)Ys()
operator, creating a nucleon pair
Cao(t) =Y Te(J(x,1)J(0,0)) ~ e™ 2" (9)

For large values of t, it projects on the lowest energy state
with the quantum numbers of J(z). The matrix I" deter-
mines the spin and parity of the state (I" = ivy97y075 for
J™ = 0T —ground state— and I' = 43y for J™ = 07).
The exponential behavior is reached only at large values
of t. It is useful to define an effective mass as

which, for large t, goes to the mass of the state and helps
to find the adequate fitting window. Some results for one-
and two-body masses can be found in fig. 3.

With this set of parameters, the two-fermion mass
value is not distinguishable from twice the fermion mass.
This is a common picture for the whole set of parame-
ters tested and no signal of the existence of a bound state
has been found below the critical value of the coupling
constant!.

5 Discussion

Renormalization effects have been analyzed for one-body
masses, and the renormalization issues concerning the cou-
pling constant were discussed in [7].

The existence of a maximum value of the coupling in
a QFT treatment of the Yukawa model has been estab-
lished. This critical value is smaller than the one needed
to form a bound state in the NR limit, and no signal of
such a bound state for lower couplings has been observed.
The limitation on the coupling constant value is a con-
sequence of the QFT approach. This is in contrast with
the potential models where the coupling can usually take
arbitrary large values.

The physical meaning of this result needs to be clari-
fied. It may be related to the quenched approximation, or
to the fact that we have neglected meson self-interactions.
Note however that both approximations are performed in
the non-relativistic treatment as well. For a given value of
the lattice spacing, there are other ways to discretize the
Yukawa model which do not have these zero modes. This
has to be further studied and it is not clear that it would
allow to reach larger renormalized coupling constants and
in particular the bound-state regime. We are not yet in
a position to decide whether the bound on the coupling
constant we encounter is a lattice artefact or whether it
really casts a doubt on the Yukawa theory itself.

It is known that the Yukawa theory is infrared free
and, as such, encounters the “triviality problem” i.e. the
fact that the ultraviolet cut-off cannot be driven to infinity
without the theory becoming free. This means that it can
only be considered as an effective theory with a physical
ultraviolet cut-off. In addition, the problem encountered
in inverting the Dirac operator appears also to put a re-
striction on the continuum limit. It is not clear whether
both problems are related or just happen both to hinder
the continuum limit.

Whether we manage or not to overcome the diffi-
culty of reaching the domain where bound states ap-
pear, the connection between the QFT treatment and the
Schrédinger approach can still be performed by calculat-
ing the low-energy scattering parameters thanks to the
method proposed by Luscher [8] and recently considered
in [9].

! There might exist bound states for very light mesons, near
the Coulomb limit, but this regime is difficult to reach on the
lattice due to the hierarchy of scales that appear.
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